Longitudinal Analysis Is More Powerful than Cross-Sectional Analysis in Detecting Genetic Association with Neuroimaging Phenotypes

نویسندگان

  • Zhiyuan Xu
  • Xiaotong Shen
  • Wei Pan
چکیده

Most existing genome-wide association analyses are cross-sectional, utilizing only phenotypic data at a single time point, e.g. baseline. On the other hand, longitudinal studies, such as Alzheimer's Disease Neuroimaging Initiative (ADNI), collect phenotypic information at multiple time points. In this article, as a case study, we conducted both longitudinal and cross-sectional analyses of the ADNI data with several brain imaging (not clinical diagnosis) phenotypes, demonstrating the power gains of longitudinal analysis over cross-sectional analysis. Specifically, we scanned genome-wide single nucleotide polymorphisms (SNPs) with 56 brain-wide imaging phenotypes processed by FreeSurfer on 638 subjects. At the genome-wide significance level P < 1.8 x 10(9)) or a less stringent level (e.g. P < 10(7)), longitudinal analysis of the phenotypic data from the baseline to month 48 identified more SNP-phenotype associations than cross-sectional analysis of only the baseline data. In particular, at the genome-wide significance level, both SNP rs429358 in gene APOE and SNP rs2075650 in gene TOMM40 were confirmed to be associated with various imaging phenotypes in multiple regions of interests (ROIs) by both analyses, though longitudinal analysis detected more regional phenotypes associated with the two SNPs and indicated another significant SNP rs439401 in gene APOE. In light of the power advantage of longitudinal analysis, we advocate its use in current and future longitudinal neuroimaging studies.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Application of three-level linear mixed-effects model incorporating gene-age interactions for association analysis of longitudinal family data

Longitudinal studies that collect repeated measurements on the same subjects over time have long been considered as being more powerful and providing much better information on individual changes than cross-sectional data. We propose a three-level linear mixed-effects model for testing genetic main effects and gene-age interactions with longitudinal family data. The simulated Genetic Analysis W...

متن کامل

On the Analysis of a Repeated Measure Design in Genome-Wide Association Analysis

Longitudinal data enables detecting the effect of aging/time, and as a repeated measures design is statistically more efficient compared to cross-sectional data if the correlations between repeated measurements are not large. In particular, when genotyping cost is more expensive than phenotyping cost, the collection of longitudinal data can be an efficient strategy for genetic association analy...

متن کامل

Marginal Analysis of A Population-Based Genetic Association Study of Quantitative Traits with Incomplete Longitudinal Data

A common study to investigate gene-environment interaction is designed to be longitudinal and population-based. Data arising from longitudinal association studies often contain missing responses. Naive analysis without taking missingness into account may produce invalid inference, especially when the missing data mechanism depends on the response process. To address this issue in the ana...

متن کامل

Iranian Brain Imaging Database: A Neuropsychiatric Database of Healthy Brain

Introduction: The Iranian Brain Imaging Database (IBID) was initiated in 2017, with 5 major goals: provide researchers easy access to a neuroimaging database, provide normative quantitative measures of the brain for clinical research purposes, study the aging profile of the brain, examine the association of brain structure and function, and join the ENIGMA consortium. Many prestigious databases...

متن کامل

Making use of longitudinal information in pattern recognition

Longitudinal designs are widely used in medical studies as a means of observing within-subject changes over time in groups of subjects, thereby aiming to improve sensitivity for detecting disease effects. Paralleling an increased use of such studies in neuroimaging has been the adoption of pattern recognition algorithms for making individualized predictions of disease. However, at present few p...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 9  شماره 

صفحات  -

تاریخ انتشار 2014